A COMPARISON BETWEEN LENSING AND X-RAY MASSES IN SIMULATED CLUSTERS

MASSIMO MENEGHETTI

INAF-OSSERVATORIO ASTRONOMICO DI BOLOGNA

IN COLLABORATION WITH:

ELENA RASIA (MICHIGAN)

STEFANO ETTORI (BOLOGNA)

FABIO BELLAGAMBA (BOLOGNA)

PASQUALE MAZZOTTA (ROME)

KLAUS DOLAG (MPA-GARCHING)

MOTIVATION

- MEASURING THE MASS OF GALAXY CLUSTERS IS
 IMPORTANT IF WE WANT TO USE THESE OBJECTS AS
 COSMOLOGICAL PROBES
- LENSING AND X-RAY ARE POTENTIALLY POWERFUL
 METHODS FOR CONSTRAINING THE MASS CONTENT OF
 CLUSTERS
- HOWEVER, THEY FREQUENTLY GIVE INCONSISTENT RESULTS...

OUR APPROACH

WE PROPOSE	THE FOLLOWING	EXPERIMENT:
------------	---------------	-------------

- CREATE MOCK OBSERVATIONS IN THE OPTICAL AND IN
 THE X-RAY BANDS OF FEW SIMULATED GALAXY
 CLUSTERS (RELAXED AND UN-RELAXED)
- ANALYZE THESE DATA AS IF THEY WERE REAL DATA:
 STANDARD TECHNIQUES TO EXTRACT THE SIGNAL, TO
 TREAT THE NOISES, ETC.
- COMPARE THE RECOVERED MASS DISTRIBUTIONS TO THE INPUT MODELS

XMAS2

SEE TALK BY E. RASIA

SKYLENS

MENEGHETTI ET AL. 2008

- USES REAL GALAXIES TAKEN FROM
 THE GOODS HST ARCHIVE + COMBO 17
 DATA
- ☐ DECOMPOSED USING SHAPELETS
- SOURCE GALAXIES DRAWN FROM
 REALISTIC REDSHIFT AND LUMINOSITY
 DISTRIBUTIONS (VVDS)
- APPLY LENSING
- ☐ COMBINE SEVERAL GALAXIES TO SIMULATE PATCHES OF THE SKY
- OBSERVATIONS WITH DIFFERENT
 INSTRUMENTS AND ATMOSPHERIC
 CONDITIONS

SKYLENS

MENEGHETTI ET AL. 2008

- USES REAL GALAXIES TAKEN FROM
 THE GOODS HST ARCHIVE + COMBO 17
 DATA
- DECOMPOSED USING SHAPELETS
- SOURCE GALAXIES DRAWN FROM
 REALISTIC REDSHIFT AND LUMINOSITY
 DISTRIBUTIONS (VVDS)
- ☐ APPLY LENSING
- COMBINE SEVERAL GALAXIES TO SIMULATE PATCHES OF THE SKY
- OBSERVATIONS WITH DIFFERENT
 INSTRUMENTS AND ATMOSPHERIC
 CONDITIONS

SKYLENS

MENEGHETTI ET AL. 2008

- USES REAL GALAXIES TAKEN FROM
 THE GOODS HST ARCHIVE + COMBO 17
 DATA
- ☐ DECOMPOSED USING SHAPELETS
- SOURCE GALAXIES DRAWN FROM
 REALISTIC REDSHIFT AND LUMINOSITY
 DISTRIBUTIONS (VVDS)
- APPLY LENSING
- ☐ COMBINE SEVERAL GALAXIES TO SIMULATE PATCHES OF THE SKY
- OBSERVATIONS WITH DIFFERENT
 INSTRUMENTS AND ATMOSPHERIC
 CONDITIONS

SIMULATED CLUSTERS

- SAMPLE OF CLUSTERS RE-SIMULATED AT HIGH RESOLUTION WITH COOLING, STAR FORMATION, SN FEEDBACK, THERMAL CONDUCTION. THIS TALK: ONE CLUSTER SEEN IN THREE PROJECTIONS.
- N. OF PARTICLES: BETWEEN FEW MILLIONS TO UP TO 15 MILLIONS WITHIN THE VIRIAL REGION

- ☐ IDENTIFICATION OF CLUSTER
 GALAXIES
- ☐ WEAK LENSING: KSB,

 MEASURE SHEAR FROM GAL.

 ELLIPT.
- STRONG LENSING:

 IDENTIFICATION OF MULTIPLE

 IMAGES
- FIT WITH LENSTOOL (KNEIB ET AL. 1993)
- DEPROJECTION ASSUMING SPHERICAL SYMM.

- ☐ IDENTIFICATION OF CLUSTER
 GALAXIES
- ☐ WEAK LENSING: KSB,

 MEASURE SHEAR FROM GAL.

 ELLIPT.
- STRONG LENSING:
 IDENTIFICATION OF MULTIPLE
 IMAGES
- FIT WITH LENSTOOL (KNEIB ET AL. 1993)
- DEPROJECTION ASSUMING SPHERICAL SYMM.

- ☐ IDENTIFICATION OF CLUSTER
 GALAXIES
- ☐ WEAK LENSING: KSB,

 MEASURE SHEAR FROM GAL.

 ELLIPT.
- STRONG LENSING:

 IDENTIFICATION OF MULTIPLE

 IMAGES
- FIT WITH LENSTOOL (KNEIB ET AL. 1993)
- DEPROJECTION ASSUMING SPHERICAL SYMM.

- ☐ IDENTIFICATION OF CLUSTER

 GALAXIES
- ☐ WEAK LENSING: KSB,

 MEASURE SHEAR FROM GAL.

 ELLIPT.
- STRONG LENSING:

 IDENTIFICATION OF MULTIPLE

 IMAGES
- FIT WITH LENSTOOL (KNEIB ET AL. 1993)
- DEPROJECTION ASSUMING SPHERICAL SYMM.

- ☐ IDENTIFICATION OF CLUSTER
 GALAXIES
- ☐ WEAK LENSING: KSB,

 MEASURE SHEAR FROM GAL.

 ELLIPT.
- STRONG LENSING:

 IDENTIFICATION OF MULTIPLE

 IMAGES
- FIT WITH LENSTOOL (KNEIB ET AL. 1993)
- DEPROJECTION ASSUMING SPHERICAL SYMM.

- ☐ IDENTIFICATION OF CLUSTER

 GALAXIES
- ☐ WEAK LENSING: KSB,

 MEASURE SHEAR FROM GAL.

 ELLIPT.
- STRONG LENSING:

 IDENTIFICATION OF MULTIPLE

 IMAGES
- FIT WITH LENSTOOL (KNEIB ET AL. 1993)
- DEPROJECTION ASSUMING SPHERICAL SYMM.

- MM OR CHANDRA OBSERVATION
- MASKING OF SMALL AND COLD
 BLOBS OF GAS
- SURFACE BRIGHTNESS PROFILE
- TEMPERATURE PROFILE BY
 EXTRACTING SPECTRA IN ANNULI
- TWO METHODS TO ESTIMATE THE MASS WITH HYDROSTATIC EQ.
 - ☐ METHOD 1: VIKHLININ ET AL. 2006
 - METHOD 2: NFW FIT (ETTORI ET AL.)

- MM OR CHANDRA OBSERVATION
- MASKING OF SMALL AND COLD
 BLOBS OF GAS
- SURFACE BRIGHTNESS PROFILE
- TEMPERATURE PROFILE BY
 EXTRACTING SPECTRA IN ANNULI
- TWO METHODS TO ESTIMATE THE MASS WITH HYDROSTATIC EQ.
 - ☐ METHOD 1: VIKHLININ ET AL. 2006
 - ☐ METHOD 2: NFW FIT (ETTORI ET AL.)

- MM OR CHANDRA OBSERVATION
- MASKING OF SMALL AND COLD
 BLOBS OF GAS
- SURFACE BRIGHTNESS PROFILE
- TEMPERATURE PROFILE BY
 EXTRACTING SPECTRA IN ANNULI
- TWO METHODS TO ESTIMATE THE MASS WITH HYDROSTATIC EQ.
 - METHOD 1: VIKHLININ ET AL. 2006
 - METHOD 2: NFW FIT (ETTORI ET AL.)

- MM OR CHANDRA OBSERVATION
- MASKING OF SMALL AND COLD
 BLOBS OF GAS
- SURFACE BRIGHTNESS PROFILE
- TEMPERATURE PROFILE BY
 EXTRACTING SPECTRA IN ANNULI
- TWO METHODS TO ESTIMATE THE MASS WITH HYDROSTATIC EQ.
 - METHOD 1: VIKHLININ ET AL. 2006
 - ☐ METHOD 2: NFW FIT (ETTORI ET AL.)

COMPRESSED

COMPRESSED

ELONGATED

2D VS 3D LENSING MASS PROFILES

PROJECTION EFFECTS, MORE IMPORTANT AT THE CENTRE

BETTER TO COMPARE PROJECTED MASSES?

2D VS 3D LENSING MASS PROFILES

PROJECTION EFFECTS, MORE IMPORTANT AT THE CENTRE

BETTER TO COMPARE PROJECTED MASSES?

CONCLUSIONS

- X-RAY: TYPICALLY UNDER-ESTIMATE TRUE MASS BY (~15-20%) [SEE ALSO RASIA ET AL. 2006; NAGAI ET AL. 2007]
- ☐ WEAK LENSING: GOOD MASS ESTIMATES (~10%)
- STRONG LENSING (AND WEAK LENSING): SENSITIVE TO PROJECTION EFFECTS
- IMPORTANT TO QUANTIFY THESE EFFECTS FOR BEING ABLE TO USE LENSING AND X-RAY MASSES TO STUDY THE PROPERTIES OF THE ICM (BULK MOTION OF GAS, LACK OF HYDRO-STATIC EQUILIBRIUM)